
A Model for Large Scale Self-Stabilization ∗†

Thomas Herault, Pierre Lemarinier, Olivier Peres, Laurence Pilard, Joffroy Beauquier
Univ Paris Sud; LRI UMR8623; INRIA; Orsay F-91405

{herault,lemarini,peres,pilard,jb}@lri.fr

Abstract

We introduce a new model for distributed algorithms de-

signed for large scale systems that need a low-overhead

solution to allow the processes to communicate with each

other. We assume that every process can communicate with

any other process provided it knows its identifier, which is

usually the case in e.g. a peer to peer system, and that nodes

may arrive or leave at any time. To cope with the large

number of processes, we limit the memory usage of each

process to a small constant number of variables, combin-

ing this with previous results concerning failure detectors

and resource discovery. We illustrate the model with a self-

stabilizing algorithm that builds and maintains a spanning

tree topology. We provide a formal proof of the algorithm

and the results of experiments on a cluster.

Keywords: Distributed Algorithm, Self-Stabilization,

Large Scale Systems, Spanning Tree Construction, Failure

Detectors.

1 Introduction

Peer to peer networks and grids are emerging large scale

systems that gather thousands of nodes. These networks

usually rely on IP to communicate: each node has a unique

address used by other nodes to communicate with it.

Usually, self-stabilizing algorithms are designed for dis-

tributed systems defined by their topology. Each process

has a finite set of communication links to exchange mes-

sages with its neighbors. In our model, we replace the ex-

istence of a complete topology with the notion of neighbor-

hood, based on resource discovery. No process knows the

set of its links and, since this set is very large, no process

attemps to build it.

∗This work is partially funded by the PCRI/INRIA Futurs - Project

Grand-Large and ACI Grid (French incentive).
†A preliminary version of this work was presented as a brief announce-

ment in SSS 2006 [13].

1-4244-0910-1/07/$20.00 c©2007 IEEE.

This model is consistent with most of the Internet peer-

to-peer systems, where a process may send messages to an-

other one if and only if it knows its IP address. To discover

identifiers, a process may receive them from another pro-

cess. We abstract out the implementation details in a simple

resource discovery service that provides identifiers of other

processes to processes that query it, thus also giving each

process an entry point in the system.

Since processes can leave the system at any time, it is

necessary for the neighbors of a process to be able to decide

whether it is still part of the system. Otherwise, the identi-

fiers of crashed processes could not be removed and would

prevent the system from converging. Detecting such fail-

ures in a purely asynchronous system is impossible [7], so

in practice, protocols such as TCP rely on timers, assuming

that the Internet is not really asynchronous. In this paper,

we use theoretical devices called failure detectors [2] to ab-

stract out this partial synchrony: rather than making timing

assumptions, we suppose that the system provides a failure

detection service.

The combination of a resource discovery service and a

failure detector yields a new computation model in which

the classical notion of a neighbor list does not appear. In

this paper, we argue that this model allows to design highly

scalable distributed algorithms, as needed in large scale sys-

tems, while retaining the ability to prove their correction

formally. We illustrate this with a self-stabilizing algorithm

that build a spanning tree over the aforementioned complete

graph. Building such a virtual topology allows to bound the

number of neighbors each process has, which is necessary

because it is not practical to multiplex many communica-

tion streams in today’s operating systems. A user algorithm

can then be composed with ours, i.e. we provide the tree as

a service.

The rest of the paper is organized as follows. We de-

scribe our model in Section 2, then discuss related work in

Section 3. We give the spanning tree algorithm in Section 4,

prove its correctness in Section 5 and show the results of

experimental performance measurements in Section 6. We

conclude in Section 7.

1

2 Model

Definition 1. The state of a process is the set of its variables

and their values. The state of a channel is the ordered list

of the messages it contains. A configuration is a set I of

process identifiers, a state for each i ∈ I and a state for

each channel ca→b∀a, b ∈ I2.

Definition 2. An execution is an alternate sequence

C1, A1, . . . , Ci, Ai, . . . such that ∀i ∈ N
∗, applying tran-

sition Ai to configuration Ci yields configuration Ci+1.

Definition 3. A suffix of an execution

C1, A1, . . . , Ci, Ai, . . . for k ∈ N is the alternate se-

quence C1+k, A1+k, . . . , Ci+k, Ai+k,

Definition 4. An algorithm is self-stabilizing to L if and

only if (correctness) every execution starting from a config-

uration of L verifies the specification, (closure) every con-

figuration of all executions starting from a configuration of

L is a configuration of L and (convergence) starting from

any configuration, every execution reaches a configuration

of L.

We use self-stabilization, as defined by Dijkstra [4], to

design a fault-tolerant algorithm: after faults bring the sys-

tem to an arbitrary configuration, the convergence property

ensures that it returns to a legitimate configuration.

We denote by (I, <) the totally ordered finite set of pro-

cess identifiers in a system and by P ⊆ I the set of correct

processes, i.e. those that do not stop (crash). The other pro-

cesses are stopped in the initial configuration of any execu-

tion : this corresponds to the failures that can happen before

stabilization occurs. We assume the existence of lossless

unidirectional FIFO links, each having a capacity bounded

by an unknown constant, between each pair of processes.

Channel failures such as message loss or alteration are also

captured in the arbitrary initial configuration. We address

the issue of writing an algorithm as if the channels were of

unbounded capacity in a system where this is not the case

in the same way as Afek and Bremler [1].

2.1 Services

The oracle is a formalized version of the concept of re-

source discovery, as used in large scale systems. It is in-

tended to replace the neighbor list used in classical dis-

tributed systems. A process executing a guarded rule can

query it, and the answer is an identifier in I. In order to

ensure the connection of the virtual topology, the collection

of all the oracles has to satisfy a global property. Formally,

in any suffix of an execution, if a set S of processes query

their resource discovery service an infinite number of times

then each process s ∈ S obtains the highest identifier in S

at least once.

The failure detector follows the definition given by

Chandra and Toueg [2]: a process can query it as part of the

execution of a rule, and it returns information on the other

processes in the system. This information is generally un-

reliable, the constraints depend on the class of detectors in

which the device is. Such a detector serves to overcome in a

simple and elegant way the impossibility of solving the con-

sensus problem in a purely asynchronous system [7]. Its im-

plementation was studied by Chen, Toueg and Aguilera [3].

Interestingly, Chandra and Toueg’s view of their failure de-

tectors in practice matches the self-stabilization paradigm:

the system behaves according to its specification most of the

time and may experience infrequent transient failures. This

can be modeled, as in this paper, by initializing it arbitrarily

and then assuming a failure-free run.

Our model is slightly different from that of Chandra and

Toueg since we cannot afford to have a device that returns a

list of potentially all the process identifiers in the system due

to its large size. Therefore, our detectors provide instead a

function suspect : I → boolean. This model is equivalent

to the original one. To map Chandra and Toueg’s model to

ours, the suspect predicate can be implemented as follows:

true if the process does not belong to the suspect list, false

otherwise. Reciprocally, to simulate Chandra and Toueg’s

model in ours, it is enough to build the list of suspects by

applying the suspect predicate to the whole set I.

In this work, all the failure detectors are, according to

Chandra and Toueg’s nomenclature, in class ⋄P , i.e. even-

tually perfect. In our model, where all runs are failure-free

since all failures are captured in the initial configuration by

the self-stabilization model, it is defined as follows:

Definition 5. A failure detector is in ⋄P if and only if after

a finite number of queries, its suspect function returns true

if and only if the given identifier is in P and this property

remains true from then on.

Theorem 1. A self-stabilizing algorithm that builds a span-

ning tree in an asynchronous system augmented with failure

detectors requires these detectors to be in ⋄P .

Proof. We use Segall’s Propagation of Information with

Feedback (PIF) algorithm [15]. It allows any process p to

obtain the list of all the processes in the prebuilt spanning

tree.

In the terminology of failure detection, a detector D′ is

weaker than a detector D if and only if there exists a re-

duction algorithm that transforms D into D′. Our proof

consists in taking any asynchronous distributed system aug-

mented with a failure detector FD in which a spanning tree

can be built by a self-stabilizing algorithm and show that it

is possible to implement an eventually perfect failure detec-

tor from it. As a result, any failure detector in ⋄P is weaker

than FD, which implies that we need an eventually perfect

failure detector to solve the spanning tree problem.

Consider a system in which the spanning tree problem is

built by an algorithm A. Let AP be the following algorithm:

in an infinite loop, execute A then PIF. From AP , let us

build a failure detector DAP as follows: when it is queried,

DAP gives as its suspect list all the identifiers in P except

itself and those it obtained from the last completed call to

PIF. When A is stabilized, PIF returns exactly the list of all

process in the system and this property remains true. Thus

DAP belongs to class ⋄P .

2.2 Execution

The algorithm is given as a set of guarded rules. Each

guard is a boolean expression that can involve the availabil-

ity of an incoming message, and each rule consumes the

message (if any), then can modify the process’ local state

and send messages. From a realistic point of view, a dis-

tributed scheduler should be assumed, but because of the

communication model, no two processes can interfere with

each other, so the proof is written under a centralized sched-

uler. We assume that the scheduler is fair, i.e. any transition

that is enabled infinitely many times is eventually triggered.

To account for process identifiers that correspond to

stopped (crashed) processes or to no process at all, we adopt

the convention that any message sent to a stopped process

is lost and that the only entity in the system that may send a

message is a correct process.

3 Related Works

To design a distributed algorithm, one needs processes

and a device for them to communicate. One such device

is shared memory, in which many spanning tree algorithms

were designed [10]. In this model, each process can read

from a memory area that belongs to certain other processes,

its neighbors. This memory area can contain the whole state

of the neighbor or a smaller piece of data (shared registers).

While this model is useful for a small scale system, like

a microprocessor, it is not appropriate for a large scale sys-

tem, mainly because the performance impact of maintaining

a shared memory area is very high in this context.

The other classical way to communicate between pro-

cesses is message passing, where pairs of process are pro-

vided with incoming and outgoing channels that can con-

tain messages. A process can put a message into an out-

going channel as part of the execution of its code, and it

is delivered to the process that is at the other end at a later

stage of the execution of the algorithm. Dolev, Israeli and

Moran [6] studied the differences between the two models

in the context of self-stabilization. This model is adapted

for geographically distributed systems made of computers

linked by a network such as the Internet since the channels

work in the same way as network-based communications.

However, algorithms written in message passing envi-

ronments usually require all the processes to have access to

a complete and up to date list of their neighbors. In a fully

connected large scale system, such as a peer to peer system,

where this list can be made of hundreds of thousands of pro-

cesses, this approach is not realistic because of the amount

of memory required to store the list and of network traffic

required to keep it up to date.

Afek and Bremler [1] and Gupta and Srimani [11] used

such a message passing model, where each process has to

know the list of all its outgoing links and the underlying

topology is not equivalent to a complete graph, to build

spanning tree in a self-stabilizing fashion. Garg and Agar-

wal [9] solve the same problem assuming the processes are

numbered sequentially, which is not the case in practice.

We choose the strictly weaker and more realistic hypothesis

of only requiring a total order on the process identifiers and

avoid storing a neighbor list for scalability.

Existing peer to peer overlays do need to build trees in a

way that is essentially self-stabilizing. The actual structures

that are built are usually tailored for their purposes, e.g. a

distributed hash table [8] or a Plaxton tree [14]. This the

main reason that led us to chose this problem for demon-

strating our model, since it highlights both its appropriate-

ness for large scale systems and the ability to compose al-

gorithms offered by self-stabilization [5].

4 Spanning Tree Algorithm

4.1 Presentation

In this section, we present the self-stabilizing spanning

tree algorithm. The tree is distributed among all the pro-

cesses and described by their parent and children fields.

We keep the topology free of cycles by means of a global

invariant: the identifier of a process must be lower than that

of its parent and greater than these of its children. In graph

theory, this is known as the heap invariant.

Roughly speaking, every process is responsible for

checking the consistency of its neighborhood, i.e. its par-

ent and its children, using its failure detector to eliminate

stopped processes, making sure its parent considers it as a

child and vice versa.

In addition, every process that is its own parent, i.e. is

root, is responsible for connecting to new processes via the

resource discovery service that provides it with identifiers.

The root r only sends to the new process p a connection

request message (Exists) if p > r in order to enforce the

global invariant.

The complete algorithm is given in Subsection 4.2. Each

process has two fields (local variables): parent, to store the

identifier of its parent in the tree (or its own identifier for a

root), and children, where it writes the set of its children.

The global invariant is enforced by the Sanity check

procedure. Line SC2 simply ensures that childrenp sets

initialized with too many components are reset. The other

procedure, Detect failures, checks that the processes in

the neighborhood of p are still members of the system. This

is the only point where a process sends a query to the failure

detection service, thus a process will eventually check the

availability of its neighbors only. Both procedures are called

at the beginning of each guarded rule. This makes sure that

all the rules are executed in a clean environment.

There are five guarded rules in the algorithm. The first

one is guarded by true, which means in practice that it is

called regularly by each process. It performs the verifica-

tions described above in the neighborhood of the process.

The purpose of the rules that react to Neighbor? and

NotNeighbor is to maintain the consistency of the pro-

cess neighborhood. The Neighbor? message is sent spon-

taneously, and silently ignored by the receiver if it is in the

sender’s neighborhood. If it is not, the receiver attemps to

add the sender to its neighborhood. If this is impossible,

it sends back a negative acknowledgement (NotNeighbor)

that causes the sender to delete the receiver from its neigh-

borhood.

The rules that handle Exists and Y ouAreMyChild

messages control the merging of trees. Informally, a pro-

cess p sends Exists(idp) to q in order to ask q to adopt

p.

A process q that receives Exists(idp) thus checks

whether it should do so (in particular w.r.t. the global in-

variant), and whether it can (this requires having less than

δ children). If q should adopt p but cannot, a finer analysis

decides whether q drops a child in favor of p or forwards the

Exists(p) message to one of its own children. In any case,

q makes sure that p’s request is eventually satisfied.

When a process p adds q to its set of children, it sends

Y ouAreMyChild(p) to q. Upon receiving this message,

q checks whether it should accept q as its parent and does

so if and only if it does not break the global invariant and q

is root. This last condition reduces the number of topology

changes during the convergence period.

When the system is stabilized, only the process with

the highest identifier is a root and there is a single tree.

Every process communicates only with its neighbors and

the only messages transmitted between two processes are

Neighbor? requests. Moreover, only the root continues to

query the resource discovery service. If the root receives an

identifier, it is lower than its own if it is part of the system,

so Exists(idroot) messages do not circulate. Every process

checks, through the failure detection service, the availabil-

ity of its neighborhood only.

4.2 Algorithm

Constants

• idp : id identifier of process p.

• δ : N
∗ bound on the degree.

Variables (per process p)

• parentp : id p’s parent.

• childrenp : set of id p’s children.

Messages

• Exists(id) : sent by root processes to contact new

processes for merging subtrees.

• Y ouAreMyChild(id) : sent by processes to accept a

new process as its child.

• Neighbor?(id) : sent by all processes to check con-

sistency of their neighbors.

• NotNeighbor(id) : negative acknowledge of

Neighbor?.

Procedures and functions

• RD Get() : id returns an identifier according to the

specification of the resource discovery service.

• suspect(idp : id) : boolean returns true if and only if

p is suspect according to the failure detection service.

• Neighborhood(p : process) : set of id =
(childrenp ∪ {parentp}) \ {idp}

• Sanity check(p : process) : V oid =

SC1 if parentp < idp then parentp ← idp

SC2 if |childrenp| > δ then childrenp ← ∅
SC3 childrenp ← {idq ∈ childrenp|idq < idp}

• Detect failures(p : process) : V oid =

DF1 if suspect(parentp) then parentp ← idp

DF2 ∀ idq ∈ childrenp: if suspect(idq)
then childrenp ← childrenp \ {idq}

Guarded rules

true→
T1 Sanity check(p)
T2 Detect failures(p)
T3 ∀ idq ∈ Neighborhood(p)

send Neighbor?(idp) to q

T4 if parentp = idp

T5 then let idq = RD Get()
T6 if idq > idp then send Exists(idp) to q

Reception of Neighbor?(idq)→
N?1 Sanity check(p)
N?2 if idp < idq then

N?3 if parentp = idp then parentp ← idq

N?4 else if idq 6∈ childrenp then

N?5 if (|childrenp| < δ) ∨ (|childrenp| = δ∧
∃idr ∈ childrenps.t. idr < idq) then

N?6 childrenp ← (childrenp \ {idr}) ∪ {idq}
N?7 else if idp 6= idq then

N?8 send NotNeighbor(idp) to q

Reception of Exists(idq)→
E1 Sanity check(p)
E2 if idq < idp ∧ idq 6∈ childrenp then

E3 if |childrenp| < δ then

E4 childrenp ← childrenp ∪ {idq}
E5 send Y ouAreMyChild(idp) to q

E6 else if {idr ∈ childrenp|idr > idq} 6= ∅
E7 then let ids ∈ {idr ∈ childrenps.t. idr > idq},

send Exists(idq) to s

E8 else let ids ∈ childrenp,

E9 childrenp ← (childrenp \ {ids}) ∪ {idq}
E10 send Y ouAreMyChild(idp) to q

Reception of NotNeighbor(idq)→
¬N1 Sanity check(p)
¬N2 if parentp = idq then parentp ← idp

¬N3 childrenp ← childrenp \ {idq}

Reception of Y ouAreMyChild(idq)→
Y1 Sanity check(p)
Y2 if parentp = idp ∧ idq > idp then parentp ← idq

5 Stabilization of the Algorithm

Definition 6 (L). Let Max be the process with the high-

est identifier in system S, P the set of processes of S and

{cp→q, ∀p, q ∈ Ps.t.p 6= q} the set of communication

channels. Since the set of processes does not change during

the executions we consider for the purpose of proving the

algorithm, we refer to the processes as ρ0 . . . ρ|P |−1 where

ρ0 = Max and ∀i ∈ [1..|P | − 1, ρi is the process with the

highest identifier in P \ {ρ0 . . . ρi−1}. A configuration C is

in L if and only if, in C, ∀p ∈ P ,

p 6= Max⇒ ∃p1, p2 . . . pn ∈ P s.t.

(p = p1) ∧ (pn = Max)
∧n−1

i=1
(parentpi

= idpi+1
∧ idpi

∈ childrenpi+1
(1)

parentp ≥ idp (2)
childrenp = {q ∈ P s.t. parentq = idp} (3)
|childrenp| ≤ δ (4)

Additionally, ∀p, q ∈ Ps.t.p 6= q, cp→q may either be

empty or, if q ∈ neighborhood(p), contain any number of

Neighbor?(p) messages (5).

Condition (1) implies that there exists a unique path from

any process to Max. Conditions (1) and (2) imply that

Max is the only root and that any legitimate configuration

satisfies the global invariant. Condition (3) ensures that any

process but Max is a child of another process in the system

and that only processes of the system are in the tree. Con-

dition (5) implies that no message will break the spanning

tree.

Lemma 2 (Closure). Let E = C1, A1, . . . , Ci, Ai, . . . be

an execution of the system. If C1 ∈ L then ∀i ∈ N
∗, Ci ∈

L.

Proof. Let us consider the set of legal actions for a process

p:

• Guard true.

T1: Sanity check: the condition in SC1 is false be-

cause of Condition (2) of the definition of Land that

of SC2 is false because of Condition (4). If the con-

dition in SC3 was true for idq ∈ childrenp then, by

Condition (3), this would mean that parentq = idp

and thus parentq < idq, which would break Condi-

tion (2). Therefore, nothing happens.

T2: Detect failures: the condition in DF1 is false be-

cause Condition (3) of the definition of Limplies all

children of p are in P . The condition in DF2 is false

because if p 6= Max, Condition (1) of the definition of

Limplies that the parent of p is in P , and if p = Max,

Condition (2) implies the parent of Max is Max, and

thus is in P .

T3: Neighbor?(p) messages are sent in communi-

cation channels cp→q for all q ∈ neighborhood(p),
which matches the condition on messages in L.

T4: because of Conditions (1) and (2), the condition is

only true for Max. However, by definition of Max,

there is no q ∈ P s.t. idq > idMax. Therefore, Max

does not send a message to a process in P . It can send

an Exists message to a stopped process, but then it is

lost and thus does not contradict the definition.

• Reception of a Neighbor? message: for Sanity check

(N?1) see above. The condition in line N?2 cannot be

true because of the condition on messages in a legiti-

mate configuration: p can only receive a Neighbor(q)
message from a process q ∈ Neighborhood(p). No-

tice that consuming the Neighbor? message could not

make the resulting configuration illegitimate since it

does not break the condition on messages in L.

• All other guards are closed by definition of L.

Lemma 3 (Correction). Let E be an execution of the system

starting in configuration C. If C ∈ L then E verifies the

specification.

Proof. First, notice that because of closure (Lemma 2), it is

enough to prove that any legitimate configuration is correct

with respect to the specification.

Conditions (1) and (2) of the definition of L imply the

existence of a unique root, namely Max. Condition (1) im-

plies the existence of a unique path from any node to the

root. This means that in any legitimate configuration, the

topology described by the processes is a tree. By Condi-

tion (4), the degree of this tree is bounded by δ.

The proof of convergence is done in three steps. Firstly,

we prove that every execution of the system eventually

reaches a configuration from which a few basic properties

remain true throughout the execution. Secondly, we define

a notion of stable process that formalizes the fact of irrevo-

cably choosing a parent. We prove that a stable process re-

mains so and that every process eventually becomes stable.

Thirdly, we prove that a system in which all the processes

are stable eventually reaches a legitimate configuration.

Definition 7 (Consistent configuration). Let C be a config-

uration of system S and p be a process of S, the state of p

is consistent in C iff |childrenp| ≤ δ ∧ parentp ≥ idp ∧
∀idq ∈ childrenp, idq < idp ∧ ¬suspect(parentp) ∧ c ∈
childrenp ⇒ ¬suspect(c).

Similarly, a message in a channel is consistent if it results

from the complete application of a guarded rule.

Remark 1. Since the global invariant holds for all pro-

cesses, a consistent configuration does not contain any cy-

cle, i.e. any set of processes P1 . . . Pn where ∀i ∈ [1..n −
1], parentPi+1

= Pi ∧ parentP1
= Pn.

It is straightforward to see that from any initial config-

uration, the system eventually reaches a consistent con-

figuration. Inconsistent states are handled by procedure

Sanity Check, as already discussed. Inconsistent mes-

sages eventually reach their destination because all chan-

nels are FIFO and the scheduler is fair. The only message

that can be forwarded is Exists, but only to a child whose

identifier is higher than the parameter of the message, thus

it can only happen a bounded number of times.

For the purpose of proving the algorithm, we consider

an execution starting in a consistent configuration, in which

all the failure detectors are converged and no process ever

stops (crashes), therefore suspect(idp) is true if and only if

p does not belong to the system. The spontaneous rule calls

Detect Failures, which eliminates such processes, and

new identifiers are only written in a process field upon re-

ception of Exists(idp) or Neighbor?(idp), where the mes-

sage was originally sent by p, which is thus alive. Therefore,

the Detect Failures procedure has no effect during the ex-

ecutions shown below and is not considered. Moreover, the

Sanity Check procedure does not alter the state of a con-

sistent process. Thus, in what follows, we do not consider

the execution of this procedure.

Definition 8 (Stable(C)). Let P be the set of processes of

system S, V = {cp→q, (p, q) ∈ P 2} the set of commu-

nication channels between any couple p, q of P 2, and let

Max denote the process with the highest identifier. Let C

be a configuration of S. The stable processes of C, denoted

by Stable(C), is the set of processes such that any p in

Stable(C) is in P and verifies:

∀q ∈ P, idq > idp ⇒ q ∈ Stable(C) (Srec)
p 6= Max⇒ ∃p1, p2 . . . pn ∈ P s.t.

(p = p1) ∧ (pn = Max)
∧n−1

i=1
(parentpi

= idpi+1
)

∧n−1

i=1
(idpi

∈ childrenpi+1
) (Spath)

parentp ≥ idp (Sparent)
∀q1, q2 ∈ P, Exists(p) 6∈ cq1→q2

(Se)
NotNeighbor(idp) 6∈ cp→parentp

∧
NotNeighbor(idparentp

) 6∈ cparentp→p (Snn)

Roughly speaking, in a given configuration, the stable

processes will not change their parents in the rest of the

execution and are connected to the “final” tree.

Condition Srec implies that p is stable only if processes

with higher identifiers are also stable. This leads to a pro-

gression of the Stable set from the highest identifiers to the

lowest. The Spath condition ensures that stable processes

are part of the tree and, in conjunction with the Sparent con-

dition, that the path to the root is made of stable processes.

Spath also ensures that the parent of p acknowledges the

stability of p, since its parent knows that p is its child and

will remain so (since there is no NotNeighbor message be-

tween p and its parent according to Snn). Condition Se also

implies that no previous connection request (Exists mes-

sages) from a stable process remains in the system. Se and

Sn ensure that no process rejects a child.

Theorem 4. Let C0, A0, C1, A1 . . . be an execution of the

system. Then Stable(C0) ⊆ Stable(C1).

Proof. By induction. Let us first consider a configuration

C0 s.t. Stable(C0) = {Max} and show that Max remains

stable in C1. Srec and Spath are true for Max.

Se is true because the only place in the algorithm where

an Exists message is sent out is line T6, where this is done

only to a strictly greater process. Snn is true as well because

the only place in the algorithm where a process sends out a

NotNeighbor message is sent out is line N?8, where it

does not send it to itself. Sparent is not broken because in

all the places in the algorithm where a value different from

idp is written in parentp, namely N?3 and Y2, this value

cannot be lower than idp.

We now consider a configuration C0 such that

Stable(C0) = ρ0, . . . , ρk. Our induction hypothesis is:

ρ0 = Max . . . ρk−1 ∈ Stable(C1). We now show that

ρk ∈ Stable(C1).
Since all the higher processes remain stable, Srec still

holds. For the same reason, there are only two ways of

breaking Spath: either p changes the value of parentp, or

parentp deletes p from its set of children.

The former requires the execution by p of one of the

following lines: 1) N?3 and Y2 are not executed because

parentp 6= idp. 2) ¬N2 is not executed because there was

no NotNeighbor message in cparentp→p.

The latter requires the execution by parentp of one

of the following lines: 1) N?4 is not executed because

parentp is stable and thus verifies condition SN?: if it

receives Neighbor? from a stable process q, then q ∈
Neighborhood(p). 2) ¬N3 is not executed because there

was no NotNeighbor message in cp→parentp
. 3) E9 is

not executed because this requires receiving a message

Exists(idq) s.t. q > p, but then q is stable and thus verifies

Se, i.e. there is no such message.

Sparent cannot be broken because this would require that

p change the value in parentp, which is proven impossible

above. Se is not broken because the only places in the al-

gorithm where an Exists message is sent out are line T6,

where this is done only by roots, and E7, where a message

Exists(idq), ∀q can only exist in C1 if there was already

such a message in C0, which is not the case here. Snn is

not broken because this would require the execution of line

N?8 by either p or parentp, but this is impossible because

p and parentp are in Stable(C0), moreover parentp ∈
Neighborhood(p) and p ∈ Neighborhood(parentp).

We conclude that Stable(C0) ⊆ Stable(C1).

We now prove that the set of stable processes eventually

grows until all processes are stable. In what follows, C is a

configuration where there is at least one non-stable process

and m is the highest such process in C.

Lemma 5. In an execution starting with C, no process

s ∈ Stable(C) s.t. |childrens ∩ Stable(C)| < δ can send

NotNeighbor(ids) to m.

Proof. The only place in the algorithm where

NotNeighbor messages are produced is upon recep-

tion of Neighbor?.

Let s be a process that receives a Neighbor? message.

Since ids > idm by definition of Stable and m, s takes m

as a child because it has at least one child lower than idm

and does not produce a NotNeighbor message.

Lemma 6. There exists a stable process p such that

|childrenp ∩ Stable(C)| < δ such that m irrevocably

writes idp in its field parentm and p irrevocably writes idm

in its field childrenp.

Proof. Suppose parentm 6∈ Stable(C). Then, by defini-

tion of m, parentm < idm, and thus the next execution of

Sanity Check will reset parentm to idm. This eventually

happens because of the spontaneous rule. Subsequently, m

will only accept a parent greater than itself: the check is

performed in each place in the algorithm where a write op-

eration is performed on parentm.

Suppose parentm = idm, i.e. m is root. Then m satis-

fies the following properties: 1) m executes its spontaneous

transition an infinite number of times. This is true by hy-

pothesis on the scheduler. 2) As part of the spontaneous

transition, m queries its oracle (line T5). Since it does so an

infinite number of times, m gets the address of at least one

process h, higher than itself (idh > idm) by definition of

the oracle. 3) m sends an Exists(idm) message to h (line

T6).

Let us now turn to r, the receiver of one of the

Exists(idm) messages that are sent out by m. There are

three cases: 1) r has less than δ children. It then adds m

to its set of children and sends Y ouAreMyChild(idr) to

it (line E4). 2) r has δ children and none of them is greater

than m. It then also adds m to its set of children and sends

Y ouAreMyChild(idr) to it (line E9). 3) r has δ children

and at least one of them, t, is greater than m. This implies

that t is stable. Then r forwards the Exists(idm) message

to t (line E7).

Since the forwarding only takes place downwards in the

tree and among stable process, it can only occur a finite

number of times. Thus, eventually a stable process u writes

idm in its set of children and sends Y ouAreMyChild(idu)
to it. Upon reception of this message, since idu > idm, if

parentm is still idm then m sets parentm to idu (line Y2).

Now suppose parentm ∈ Stable(C) and let us exam-

ine the possibilities for m to write another value into this

field. There are three places in the algorithm where such a

write operation takes place: 1) In the Sanity Check pro-

cedure, parentm is erased if it is lower than idm, which is

not the case here. 2) Upon reception of Y ouAreMyChild,

a write operation can only take place if parentm =
idm, which is not the case here. 3) Upon reception of

NotNeighbor(idp), if idp = parentm then parentm is

reset to idm (line ¬N2). However, by Lemma 5, no such

message is produced. Therefore, this case cannot happen.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
e
p
th

Number of processes

depth (second heuristics)
depth (second heuristics) degree 3
depth (second heuristics) degree 4
depth (second heuristics) degree 5
optimal depth

(a) Depth of the spanning trees.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

T
im

e
 (

s
e
c
o
n
d
s
)

Number of processes

Convergence times (first heuristics)
Convergence times (second heuristics)

(b) Convergence time

Figure 1. Scalability of the spanning tree algorithm.

Since parentm = idp holds for the rest of the execution,

idm ∈ childrenp immediately follows.

Corollary 7. m eventually becomes stable.

Proof. m already satisfies conditions Srec, Spath, Sparent

and Snn. The only line in the algorithm where m could

send Exists(idm) is T6, but it does not do so because

parentm 6= idm. It is thus enough to show that the re-

maining Exists(idm) messages are consumed.

Upon reception of an Exist(idm) message, a process

that is lower than m, i.e. any unstable process, ignores it

(line E2). It it however possible that a stable process s s.t.

ids 6= parentm add idm to its set of children and send

Y ouAreMyChild(ids) to it. Then the following proper-

ties apply: 1) Since parentm is now permanently set to

another process (Lemma 6), m ignores this message (line

Y2). 2) s eventually executes its spontaneous rule (by hy-

pothesis on the scheduler) and thus sends Neighbor? to

m (line T3). 3) Upon reception of Neighbor?(ids), s 6∈
Neighborhood(m). This is because (a) ids > idm and

thus ids 6∈ childrenm and (b) ids 6= parentm. Therefore,

m replies by sending NotNeighbor(idm) to s (line N?8).

4) Upon reception of NotNeighbor(idm), s removes idm

from its set of children (line ¬N3).

Toward a legitimate configuration

Lemma 8. Let E be an execution of the system S starting

from a configuration C s.t. ∀p ∈ P , the state of p is consis-

tent and p ∈ Stable(C). There exists a configuration L of

E such that L ∈ L.

Proof. Spath is the same as condition (1) of the definition

of L and Sparent is the same as condition (2). Condition (4)

is satisfied because all processes are always in a consistent

state during E by assumption.

If in C, condition (3) is not satisfied, then ∃p, q ∈
P s.t. idp ∈ childrenq ∧ idq 6= parentp. If p 6∈ P , process

q eventually rejects p from its children by executing DF2.

If p ∈ P , process q eventually rejects p from its children: q

eventually sends Neighbor?(idq) to p, and p eventually an-

swers NotNeighbor(idp) to q (because idq 6∈ childrenp

since q and p are in a consistent state and it is impossible

that idp < idq ∧ idq < idp), and then q rejects p from

its children. Thus, every process eventually satisfies con-

dition (3). Moreover, if a process satisfies condition (3) in

some configuration of E, then this process satisfies this con-

dition in all subsequent configuration. Indeed, a process p

can add a process q to its children iff p receives a message

Exists(idq). But this cannot happen because of condition

Se.

Thus there exists a suffix E′ of E s.t. in all configura-

tions of E′, conditions (1), (2), (3) and (4) are satisfied.

Conditions Snn and (3) implies that in all configurations

of E′, we have ∀p, q ∈ P s.t. p 6= q, Notneighbor(idp) 6∈
cp→q . Moreover, condition Se implies that in all config-

urations of E′, ∀p, q, r ∈ P s.t. p 6= q, Exists(idr) 6∈
cp→q , and so there exists a suffix E′′ of E′ in which:

∀p, q, r ∈ P s.t. p 6= q, Y ouAreMyChild(idr) 6∈ cp→q .

Thus, condition (5) of the definition of L is always satisfied

in E′′.

6 Experimental Measurements

We measured the performances of a simple implementa-

tion of our algorithm on an experimental cluster platform.

It consists in 150 bi-Opteron machines linked by Gigabit

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

D
e
p
th

Number of processes

average depth (first heuristics)
average depth (second heuristics)

(a) Average depth of the nodes.

 20

 30

 40

 50

 60

 70

 80

 90

 2 3 4 5 6 7 8

C
o
n
v
e
rg

e
n
c
e
 t
im

e

Degree

second heuristics (4500 processes)

(b) Influence of the degree.

Figure 2. Other characteristics of the spanning tree algorithm.

Ethernet adapters, part of the Grid Explorer platform. This

high-performance cluster allows us to run large scale exper-

iments in a reproducible way.

To measure the scalability of the algorithm, we start it

each time from a totally disconnected configuration. This

is the worst case: as soon as some processes start earlier

than others the convergence time is shorter. We compare

two heuristics in the only place in the algorithm left up to

the user : the choice of the child that is deleted (line E9)

or to which Exists messages are forwarded (line E7). The

first one consists in always selecting the highest identifier,

the second one in randomly choosing an eligible child fol-

lowing a homogeneous distribution.

6.1 Experimental Method

Measuring the convergence time of self-stabilizing algo-

rithms is not a straightforward process. First, since any dif-

ference in the starting times of processes changes the re-

sults significantly, we synchronized them using a broadcast

mechanism. The second problem is that no single node has

a complete view of a whole configuration. Therefore, we

added to our nodes a logging mechanism to record every

modification of the state and let each experiment run until

the user interrupted it. Then each process dumped its local

history and a post-mortem analysis was conducted.

To obtain the times presented in the figures, we extract

the first configuration (according to logical clocks) where

convergence is attained, and return the time measured by

the processes from the beginning of the experiment to that

point according to their local clocks. If the predicate holds

in no configuration, the experiment is run again during a

longer time. Once an upper bound is determined, we run

the experiment 20 times to obtain the mean and standard

deviation that are used to plot the curves.

In order to simulate the presence of a high number of

machines, we ran several instances of the program on each

physical machine. We verified experimentally that this did

not saturate the available CPU and network resources.

6.2 Algorithm

Our implementation is mostly straightforward. The

only part that requires explanations is the timeout-triggered

spontaneous rule. The heuristic we use to dynamically

adapt the duration of the timeout to the activity of the sys-

tem takes five time arguments: initial, minimum, maximum,

increment and decrement. At startup, the process triggers

the spontaneous rule with a period of initial time units. Ev-

ery time the process changes its state, it subtracts decrement

from its current timeout, with a lower limit of minimum.

Every time the application of the spontaneous rule does not

change its state, it adds increment to its timeout value up to

maximum. Since the algorithm induces state modifications

only when the system has not converged, this heuristic re-

duces the time lost waiting for a message from a process

during the convergence phase and lowers the amount of pro-

cessor and network usage when convergence is achieved.

We designed our resource discovery service to be ef-

ficient on a cluster, since this is the experimental testbed

we used. The local daemons that provide identifiers to the

processes maintain lists of identifiers. The daemons reg-

ularly communicate via multicast channels to update their

lists consistently. This includes sorting them in LRU order,

so that processes that stop querying their oracle are no more

considered.

6.3 Results

We present in figure 1 the convergence time and the

depth of the tree for 750 to 10050 processes. This figure

shows that the convergence phase is divided into two stages:

at first the main operation is the insertion of a process in a

tree, at this point its depth is optimal, i.e. logarithmic in

the number of processes. This is made more efficient by in-

creasing the degree and thus giving each process more chil-

dren slots. When the main operation becomes tree merging,

the depth begins to progress linearly with the number of tree

merging, that is linear in the number of nodes. Figure 1(b)

shows that the second heuristics yields better performances

than the first one. We explain this result below.

Figure 2 displays other characteristics of the algorithm:

figure 2(a) reflects the average depth of nodes, an indicator

of the quality of the trees that shows that the trees built using

the second heuristics have a higher filling rate, due to the

random choice for descending Exists messages. This is

why the second heuristics gives a better convergence time.

Figure 2(b) shows the influence of δ on the convergence

time. As expected, one can see that a higher number of

children slots allows the logarithmic phase to last longer,

thus improving the performances.

7 Conclusion and Future Works

In this work, we propose a new model in which to design

distributed algorithms for large scale systems. We replace

the classical notion of a neighbor list with the combination

of two devices, a resource discovery service and a failure

detector, in order to avoid making unnecessary assumptions

and to improve scalability.

We illustrate our model with a self-stabilizing algorithm

that builds a spanning tree whose degree is bounded by δ us-

ing only δ+1 process identifiers. We present a formal proof

of convergence and performance measurements of a proto-

type implementation of this algorithm and its services for

clusters. The experimental results show that the algorithm

performs well enough to argue in favor of the application of

self-stabilization in practice.

Our intended followup on this work is to design other

protocols, in the same model, so as to explore its viability

and efficiency for different problems.

In particular, we will study other topologies suitable for

large scale systems. It would also be interesting to try to

define the notion of stabilisation time in this model. This

would require stronger assumptions on the resource discov-

ery service, but which ones exactly is an open question.

References

[1] Y. Afek and A. Bremler. Self-stabilizing unidirectional net-

work algorithms by power supply. Chicago Journal of The-

oretical Computer Science, 4(3):1–48, 1998.
[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM, 43, March

1996.
[3] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of

service of failure detectors. IEEE Transactions on Comput-

ers, 51, May 2002.
[4] E. Dijkstra. Self stabilizing systems in spite of distributed

control. Communications of the Association of the Comput-

ing Machinery, 17(11):643–644, 1974.
[5] S. Dolev. Self-Stabilization. MIT Press, 2000.
[6] S. Dolev, A. Israeli, and S. Moran. Resource bounds for self

stabilizing message driven protocols. In PODC91 Proceed-

ings of the Tenth Annual ACM Symposium on Principles of

Distributed Computing, pages 281–293, 1991.
[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility

of distributed consensus with one faulty process. J. ACM,

32(2):374–382, 1985.
[8] M. Freedman and D. Mazieres. Sloppy hashing and self-

organizing clusters. In Proceedings of the 2nd Interna-

tional Workshop on Peer-to-Peer Systems (IPTPS03), Berke-

ley, CA, 2003.
[9] V. K. Garg and A. Agarwal. Self-stabilizing spanning tree

algorithm with a new design methodology. Technical Report

TR-PDS-2004-001, 2004.
[10] F. C. Gärtner. A survey of self-stabilizing spanning-tree con-

struction algorithms. Technical Report IC/2003/38, EPFL,

Technical Reports in Computer and Communication Sci-

ences, 2003.
[11] S. K. S. Gupta and P. K. Srimani. Self-stabilizing multicast

protocols for ad hoc networks. J. Parallel Distrib. Comput.,

63(1):87–96, 2003.
[12] T. Herault, P. Lemarinier, O. Peres, L. Pilard, and

J. Beauquier. Self-stabilizing spanning tree algorithm for

large scale systems. Technical Report 1457, LRI, 2006.
[13] T. Herault, P. Lemarinier, O. Peres, L. Pilard, and

J. Beauquier. Self-stabilizing spanning tree algorithm for

large scale systems (brief announcement). In A. K. Datta

and M. Gradinariu, editors, Eighth International Symposium

on Stabilization, Safety, and Security of Distributed Systems

(SSS), Lecture Notes in Computer Science, 2006.
[14] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

nearby copies of replicated objects in a distributed environ-

ment. In SPAA ’97: Proceedings of the ninth annual ACM

symposium on Parallel algorithms and architectures, pages

311–320, New York, NY, USA, 1997. ACM Press.
[15] A. Segall. Distributed network protocols. IEEE Transac-

tions on Information Theory, 29(1):23–34, 1983.

